Declusters a time series using a storm window approach
Decluster_SW.Rd
Find peaks with a moving window. The code is based on the IDEVENT
function provided by Sebastian Solari.
Value
List comprising vectors containing the original time series Detrended
, independent (declustered) events Declustered
and the elements of the original series containing the declustered events EventID
.
Examples
#Declustering the O-sWL at site S22 using a 3-day window.
v<-Decluster_SW(Data=S22.Detrend.df[,c(1:2)],Window_Width=7)
#> Warning: no non-missing arguments to max; returning -Inf
#> Warning: no non-missing arguments to max; returning -Inf
#> Warning: no non-missing arguments to max; returning -Inf
#> Warning: no non-missing arguments to max; returning -Inf
#> Warning: no non-missing arguments to max; returning -Inf
plot(as.Date(S22.Detrend.df$Date),S22.Detrend.df$Rainfall,pch=16)
points(as.Date(S22.Detrend.df$Date)[v$EventID],v$Event,col=2,pch=16)