Declusters a Summed time series using a moving (Storm) Window approach
Decluster_S_SW.Rd
Finds the sum of a time series within a moving window then declusters the summed series using another moving window.
Arguments
- Data
Data frame containing two columns. In column:
1
A"Date"
object of equally spaced discrete time steps.2
Numeric vector containing corresponding time series values.
- Window_Width_Sum
Numeric vector of length one specifying the window width over which to sum the data.
- Window_Width
Numeric vector of length one specifying the width, in days, of the window used to ensure events are independent.
Value
List comprising vectors containing the original time series Detrend
, the summed series Totals
, independent (declustered) events Declustered
, the elements of the original series containing the start (Event_Start
), center EventID
, and end (Event_End
) of the declustered events. Note for Window_Width_Sum_Type="End"
, Event_End
and EventID
are identical.
Examples
#Declustering 24 hour rainfall totals at site S13 using a 7-day window for declustering the events.
plot(S13_Rainfall$Date,S13_Rainfall$Rainfall)
S13_Rainfall_Totals_Declust<-Decluster_S_SW(Data=S13_Rainfall, Window_Width_Sum=24,
Window_Width=7*24)
plot(S13_Rainfall[,1],
S13_Rainfall_Totals_Declust$Totals,
pch=16,ylim=c(0,10))
points(S13_Rainfall[S13_Rainfall_Totals_Declust$EventID,1],
S13_Rainfall_Totals_Declust$Totals[S13_Rainfall_Totals_Declust$EventID],
col=2,pch=16)