Fits a single generalized Pareto distribution - Fit
GPD_Fit.Rd
Fit a Generalized Pareto Distribution (GPD) to a declustered dataset.
Usage
GPD_Fit(
Data,
Data_Full,
u = 0.95,
Thres = NA,
mu = 365.25,
GPD_Bayes = TRUE,
Method = "Standard",
min.RI = 1,
max.RI = 100,
PLOT = FALSE,
xlab_hist = "Data",
y_lab = "Data"
)
Arguments
- Data
Numeric vector containing the declusted data.
- Data_Full
Numeric vector containing the non-declustered data.
- u
GPD threshold expressed as a quantile
[0,1]
ofData
vector. Default is0.95
.- Thres
GPD threshold expressed on the original scale of the
"Data"
. Only one ofu
andThres
should be supplied. Default isNA
.- mu
Numeric vector of length one specifying (average) occurrence frequency of events in the
Data_Full
input. Default is365.25
.- GPD_Bayes
Logical; indicating whether to use a Bayesian approach to estimate GPD parameters. This involves applying a penalty to the likelihood to aid in the stability of the optimization procedure. Default is
TRUE
.- Method
Character vector of length one specifying the method of choosing the threshold.
"Standard"
(default) chooses the exact threshold specified as either"u"
or"th"
, whereas"Solari"
selects the minimum exceedence of the"Data"
above the user-specified threshold.- min.RI
Numeric vector of length one specifying the minimum return period in the return level plot. Default is
1
.- max.RI
Numeric vector of length one specifying the maximum return period in the return level plot. Default is
100
.- PLOT
Logical; indicating whether to plot diagnostics. Default is
FALSE
.- xlab_hist
Character vector of length one. Histogram x-axis label. Default is
"Data"
.- y_lab
Character vector of length one. Histogram x-axis label. Default is
"Data"
.
Value
List comprising the GPD Threshold
, shape parameter xi
and scale parameters sigma
along with their standard errors sigma.SE
and xi.SE
.
Details
For excesses of a variable X over a suitably high threshold u the fitted GPD model is parameterized as follows: $$P( X > x| X > u) = \left[1 + \xi \frac{(x-u)}{\sigma}\right]^{-\frac{1}{\xi}}_{+}$$ where \(\xi\) and \(\sigma>0\) are the shape and scale parameters of the GPD and \([y]_{+}=max(y,0)\).
Examples
#Decluster time series
S20T_decl = Decluster(Data=S20_T_MAX_Daily_Completed_Detrend_Declustered$Detrend)
#Fit GPD
GPD_Fit(Data=S20T_decl$Declustered,
Data_Full=S20_T_MAX_Daily_Completed_Detrend_Declustered$Detrend)
#> $Threshold
#> [1] 1.823222
#>
#> $Rate
#> [1] 4.74506
#>
#> $sigma
#> [1] 0.1594508
#>
#> $xi
#> [1] 0.172105
#>
#> $sigma.SE
#> [1] 0.09144518
#>
#> $xi.SE
#> [1] 0.06507229
#>