Fits Multiple independent generalized Pareto models - Fit
Migpd_Fit.RdFit multiple independent generalized Pareto models to each column of a data frame. Edited version of the migpd function in texmex, to allow for NAs in a time series.
Usage
Migpd_Fit(
Data,
Data_Full = NA,
mth,
mqu,
penalty = "gaussian",
maxit = 10000,
trace = 0,
verbose = FALSE,
priorParameters = NULL
)Arguments
- Data
A data frame with
ncolumns, each comprising a declustered and if necessary detrended time series to be modelled.- Data_Full
A data frame with
ncolumns, each comprising the original (detrended if necessary) time series to be modelled. Only required if threshold is specified usingmqu.- mth
Marginal thresholds, above which generalized Pareto models are fitted. Numeric vector of length
n.- mqu
Marginal quantiles, above which generalized Pareto models are fitted. Only one of
mthandmqushould be supplied. Numeric vector of lengthn.- penalty
How the likelihood should be penalized. Defaults to
"gaussian".- maxit
Numeric vector of length specifying the maximum number of iterations used in the optimization. Default is
10000.- trace
Default is
0.- verbose
Default is
FALSE.- priorParameters
Prior parameters. Only use if
penalty = "gaussian".
Examples
#With date as first column
S22.GPD<-Migpd_Fit(Data=S22.Detrend.Declustered.df,
Data_Full=S22.Detrend.df,
mqu =c(0.99,0.99,0.99))
#Same GPDs fit as above but thresholds given on the original scale
S22.Rainfall.Quantile<-quantile(na.omit(S22.Detrend.Declustered.df$Rainfall),0.99)
S22.OsWL.Quantile<-quantile(na.omit(S22.Detrend.Declustered.df$OsWL),0.99)
S22.GW.Quantile<-quantile(na.omit(S22.Detrend.Declustered.df$Groundwater),0.99)
S22.GPD<-Migpd_Fit(Data=S22.Detrend.Declustered.df[,-1],
Data_Full=S22.Detrend.df[,-1],
mth =c(S22.Rainfall.Quantile,S22.OsWL.Quantile,S22.GW.Quantile))